Numerical studies of non-local hyperbolic partial differential equations using collocation methods

نویسندگان

  • Adel Rashad Hadhoud Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt.
  • Kamal Raslan Raslan Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt
  • khalid Karam Ali Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt
چکیده مقاله:

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accuracy and stability of the methods are assessed by applying it to the test problem. The results are found to be in good agreement with known solutions and with existing collocation schemes in literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy stable numerical methods for hyperbolic partial differential equations using overlapping domain decomposition

Article history: Received 15 April 2011 Received in revised form 16 February 2012 Accepted 13 March 2012 Available online 3 April 2012

متن کامل

Hyperbolic Partial Differential Equations

Evolution equations associated with irreversible physical processes like diffusion and heat conduction lead to parabolic partial differential equations. When the equation is a model for a reversible physical process like propagation of acoustic or electromagnetic waves, then the evolution equation is generally hyperbolic. The mathematical models usually begin with a conservation statement that ...

متن کامل

Robust Numerical Methods for Partial Differential Equations

The general theme of this project is to study numerical methods for systems of partial diffential equations which depend on one or more critical parameters. Typically, we are interested in systems which change type as a critical perturbation parameter tend to zero. Our goal is to construct numerical methods with convergence properties which are uniform with respect to the perturbation parameter...

متن کامل

Adaptive Collocation Methods for the Solution of Partial Differential Equations

An integration algorithm that conjugates a Method of Lines (MOL) strategy based on finite differences space discretizations, with a collocation strategy based on increasing level dyadic grids is presented. It reveals potential either as a grid generation procedure and a Partial Differential Equation (PDE) integration scheme. It copes satisfactorily with a example characterized by a steep travel...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 3

صفحات  326- 338

تاریخ انتشار 2018-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023